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Abstract-This paper presents an application of the Couette iceform design model. Two-dimensional 
iceformation over a cold fiat plate is used to demonstrate the evolution theory approach to controlling the 
ice formation shaping process, Theoretical ice profiles reasonably matched experimental results. Optimal 
control parameter relationships for designing minimum energy dissipation shapes were obtained. These 
results could be used in iceform design of shapes for complex flows such as wing/fuselage and tube/fin 

junctures. 

1. INTRODUCTION 

THE COUETTE iceform design model [I] can be used as 
a basis for two- and three-dimensional shape design. 
The Couette iceform model applies to both the ice and 
water fields close to the interface. Examination of any 
Bow (laminar, transitional or turbulent) close to a 
surface reveals that the velocity profile closely 
resembles a linear velocity profile. For example, a 
laminar boundary layer has a limiting velocity gradi- 
ent which arises as the wall is approached as shown 
by Schlichting [2] and Paff [3]. The linear velocity 
profile close to the wall is also found in turbulent 
situations as supported by the concept of the laminar 
sublayer. In addition the turbulent boundary layer is 
represented by a universal velocity profile that yields 
a characteristic velocity on the outer fringe (character- 
istic wall coordinate) of the laminar sublayer. 

In any case, the near wall region at any point can 
be approximated by a Couette flow provided a charac- 
teristic velocity and effective fluid layer thickness are 
defined. For example, Fig. 1 shows a linear extension 
of the wall shear stress in a wedge flow boundary 
layer. The thermal boundary layer is represented by 
Nusselt number characteristics at the surface along 
with Prandtl number, pressure gradient and starting 
length dependence. 

1.1. Interface point model 

The Couette model can be applied at any point 
along the ice/water interface boundary. This yields 
local momentum, heat transfer and energy dissipation 
behavior that is controlled by global flow and thermal 
parameters. Consequently, one interface point is used 
to solve for the optimal thermal parameters for a given 
Reynolds number. Since the ice formation process is 
being used as a natural design tool [4], the designer 
does not wish to control the whole interface shape ; 
rather only gross features such as frontal area, 

maximum or minimum ice thickness are considered. A 
gross feature is described by one point on the ice/water 
interface. 

The string analogy, double [5] or single [6], akin to 
the basic string problem in the Calculus of Variations 
can be used to visualize control of two- and three- 
dimensional ice geometry. The geometry is controlled 
at a point while the remaining geometry is determined 
by the natural physics. The point can be controlled 
such that the resulting shape minimizes an energy 
functional. Other end points are determined by natu- 
ral boundary conditions rather than specifying zero 
geometric variation. An evolution theory outlined in 
the previous paper [l] is used to determine the thermal 
control parameters that yield minimum energy dis- 
sipation for a given Reynolds number. 

1.2. Motivation far flat plate iceformation example 
Iceformation design over a flat plate laminar flow 

is a good problem to show use of the Couette model 
and the evolution theory. Much is known about lami- 
nar flow and heat transfer over a flat piate (Blasius) 
and over wedge shapes (Falkner-Skan) [‘7]. The two- 
dimensional velocity and temperature behavior leads 
to similarity solutions where the square root of the 
Reynolds number is the flow control parameter as 
shown by Schlichting [2]. 

Second, previous work has been devoted to describ- 
ing ice formation over a flat plate in laminar flow and 
different thermal boundary conditions. For example, 
Hirata et al. [S] report theoretical and experimental 
results for ice profiles and correlate answers to a heat 
transfer “product”, the axial Reynolds number times 
the square of the thermal parameter. It was also 
demonstrated that a one-dimensional description 
suffices for values of the heat transfer product greater 
than 9 

Re,@ > 9. (1) 
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NOMENCLATURE 

b/6 ice thickness root parameter 6 water channel height 

&, 

Brinkman number 6, effective Couette plate spacing 
designation function i I normalized by 6 

D virtual cylinder diameter Vc effective wall coordinate 
F correlation factor K thermal conductivity ratio 

.9/o, generation function 0, thermal parameter 
I ice thickness over plate 0,/O, heat transfer strength ratio 
M velocity axial exponent t starting length 

N% axial Nusselt number 0 energy dissipation 

Nllc water space Nusselt number O/8, relative energy dissipation 
Pr Prandtl number wedge angle from wall 

Rcn cylinder Reynolds number i,, zero evolution length root. 

Rc, reference Reynolds number 

Rc, axial Reynolds number 

SI starting length factor 
Subscripts 

i 
Y axial coordinate 

iterative steps 

X flow and thermal parameters 
M minimum energy dissipation 

.t c effective water space. 
s steady state. 

Greek symbols Superscript 

BWlBl energy dissipation strength ratio optimal condition. 

This yields a guideline for selecting interface points 
that are likely to be represented well by the Couette 
iceform model. Seki et ul. [9] show the result of flat 

plate iceformation when the free stream is accelerated 

by ice growing on an opposite wall. For certain par- 
ameter values, the laminar boundary layer transitions 

and a region of decreased ice thickness results due to 

turbulent heat transfer enhancement. 
Thirdly, the flat plate geometry is of practical sig- 

nificance as an endwall in the juncture with cylinder 
and turbine blade bodies. Recent work by LaFleur 

and Langston [lo] has explored the resulting ice inter- 
face contours from a cylinder/flat plate juncture with 

an oncoming laminar boundary layer. The three- 

dimensional juncture flow drag was reduced by an 
average of 18% using the iceformation method. 

In this paper the iceformation design over a cooled 

flat plate is presented. The problem is modeled using 
a wedge solution and the Couette iceform model of 

the near interface flow and thermal fields in both the 

ice and water. A number of governing equations are 
summarized followed by solution of steady state ice 
thickness, steady and optimal ice profiles, and cal- 
culation of optimal thermal control parameters. The 

evolution theory is used to show development of 
generation function, designation function and energy 

u = u,xm 
q&e _;A 

Wedge 

I I I 
FE. 1. Couette model of flow over a wedge. 
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Water flow 

x=x, 
Virtual cylinder 

location 

+ 

I24 

Region of interest : 5 e x c (xM- D ) 

FlG. 2. Water channel for flat plate iceforms. 

dissipation as steady state is reached. It is also shown 
that optimal geometries are adapted to parameters. 

2. PROBLEM DEFINITION 

The flat plate iceformation problem is produced by 
cooling the wall of a traditional Blasius type flat plate 
laminar boundary layer. The theoretical thermal 
boundary condition is introduced sharply at some 
distance downstream of the beginning of velocity 
boundary layer development ; a starting length exists. 
Figure 2 shows the system configuration of a finite 
water channel with the freezing parent surface down- 
stream of the boundary layer origin. 

The info~atjon gained from the study of the flat 
plate can be used in juncture design problems. Figure 
2 indicates the virtual location of a cylinder body 
that would be used to create a juncture. The specified 
Reynolds number is based on the fixed characteristic 
length of the cylinder diameter. However, this paper 
addresses only the flat plate condition. 

The region of interest spans from the beginning of 
the cold plate ending one diameter upstream of the 
virtual cylinder. Turbulent juncture heat transfer data 
given by Ireland and Jones [I I], and Goldstein et al. 
[12] indicate that the enhanced heat transfer in the 
juncture region does not extend appreciably beyond 
one diameter upstream of the cylinder leading edge. 
Heat transfer data is not available for the laminar 
juncture flow. However, Baker’s landmark work [ 131 
on the laminar horseshoe vortex shows that the three- 
dimensional juncture flow does not extend beyond 
one diameter upstream. Also the pressure gradients 
are less pronounced one diameter upstream of the 
cylinder obstruction. Therefore, the region of interest 
does not extend beyond this virtual axial location. 

2.2. Wedge model 
Previous investigators of the flat plate ice fo~ation 

problem such as Hirata et al. 1141 have shown that 
the ice profile resembles a wedge shape. The laminar 
case ice profile starts from zero thickness and mono- 
tonically thickens in the downstream direction. This 
is consistent with the decrease of Nusselt number as 
a thermal boundary layer develops. The interface 
equation or the steady state generation function indi- 
cate that a lower interface Nusselt number yields 
thicker ice over the parent surface, as shown in Fig. 
2. The modeled wedge shape is expected to depart 
slightly from previously reported results due to vari- 
ation in plate thermal-step boundary condition and 
due to approximations in the model. 

The wedge shape is modeled using a Falkner-Skan 
type heat transfer solution coupled with a starting 
length factor given by Kays and Crawford [7) 

hiu _ F(Pr, m)&‘2 
li 

Sl(-% 5) 
(2) 

where the starting length factor is given by equation 

(3) 

S&c,@ = x- f 
q-3 113 

[ 01 (3) 

The heat transfer coefficient for the wedge is obtained 
using a bilinear fit of Table 9-2 in Kays and Crawford 
as 

F(Pr,m) = 0.52-0.297m$Pr[0.021 +O.l39m] (4) 

where the Prandtl number for water near freezing is 
13.44 and where the wedge angle leads to free stream 
velocity as a power function of the axial position 
where the exponent is given by equation (5) 

(5) 

The equivalent wedge angle is related to the ice thick- 
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ness at an axial position relative to the starting length 
where the ice layer is assumed to begin 

I 
w = arctan --; ( ! _Y - < 

Additionally the Reynolds number based on the vir- 

tual cylinder diameter is linked to a reference Reyn- 
olds number based on the axial coordinate (with zero 
ice thickness) 

.Y 
Rer = ReDD. (7) 

The ice layer creates a narrowing of the channel water 
space; thus an acceleration of the “free stream” 

velocity is used to augment the reference Reynolds 
number based on axial position. The Reynolds 

number based on the axial coordinate with ice layer 
development is then 

ci J 6 
Re, = Reyg_I= ReDDST. 

The pressure gradient does not remain zero due to the 

ice layer development over the flat plate. 

2.3. Problem corltrol parumeters 

The iceformation design problem is controlled by 
two parameters : a flow parameter and a thermal par- 
ameter. The flat plate iceform is controlled by Reyn- 

olds number based on a fixed length (the virtual 
cylinder diameter instead of axial position or ice 
thickness) and the temperature ratio defined in the 

previous paper [ 11. The two parameters represent the 
two degrees of freedom that exist in the design 
problem. Consequently, other quantities such as evol- 

ution length can be specified and the thermal or flow 
parameter can be solved. This type of approach 

addresses an adaptive design goal [6]. In summary, 
the adaptive design goal is to determine the conditions 

that lead to optimal geometries. The adaptive goal 
finds conditions or control parameters that satisfy 

(9) 

where the independent variable may be a vector or 

scaler combination of parameters 

X = X(Re,,. 0,). (10) 

This contrasts the traditional design optimization goal 
of determining the geometries that are optimal. The 
traditional goal finds geometries that satisfy 

(11) 

The Couette iceform model was formulated to satisfy 
the traditional design optimization goal. The Couette 
iceform model is used to represent the energy dis- 
sipation dependence on the flat plate ice geometry. 
Since the ice geometry adapts to the specified flow and 

thermal parameters, solution of the traditional goal 
leads to the determination of optimal control par- 
ameters. 

Additional parameters are provided by arbitrary 
quantities that describe the scale of the boundaries. 
For example, the virtual cylinder diameter and 

location both contribute to defining the region of 

interest as shown in Fig. 2. The magnitude of the 
entry length determines the location of the ice wedge 

beginning. The channel width is an important par- 
ameter for modeling the velocity acceleration due to 

ice layer development. Therefore. the multi-dimcn- 

sional iceformation problem has more than one 
characteristic length. The virtual cylinder diameter is 

the most-fixed characteristic length and is used for the 
Reynolds number flow paramctcr. 

3. STEADY STATE CHARACTERIZATION 

The evolution theory utilizes dynamic variation 

equations and a thermodynamic selection criterion. 

The first solution procedure determines the steady ice 
geometries in terms of prescribed flow and thermal 

parameters. Steady state is governed by a set of wedge 
model and Couette iceform model equations and an 
iterative algorithm. 

3.1. Applying the Couette model 

The Couette model represents simplification of 

both the flow and thermal fields in both the ice and 
water phases about a region close to the interface. The 
equivalent Couette iceform of the flat plate can be 
determined by examining the wedge model. Figure I 
shows a similarity solution for the velocity profile over 

a wedge shape. The outer boundary layer velocity is 
chosen as the characteristic velocity. This yields an 
equivalent Couette flow layer that is a fraction of 

the true boundary layer thickness. The result is an 
equivalent water space that is stated in terms of Rcyn- 
olds number based on the axial position, the axial 
position and an equivalent similarity variable 

Based on the previous flat plate studies [S, 8. 9, 141. 
the wedge angle is expected to be small. Therefore 
the equivalent similarity variable is approximately 1.6 

corresponding to a nominal axial power of velocity of 
119 as shown in Fig. 1. This yields an equivalent water 

space of 

?‘c = 2.16.~ Re, “I. (13) 

The effective Couettc plate spacing is the effective 
water space plus the ice thickness 

6, = I’c + I. (14) 

The Couette model of the water space thermal field 
is stated in terms of Nusselt number based on the 
equivalent water space [l]. This Nusselt number is 
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related to the local Nusselt number model based on 
axial position over the assumed wedge shape 

Nu, = NU$ (15). 

Equations (13) (8) and (2)-(6) are combined into 
equation (15) to calculate the Nusselt number based 
on effective water space given the appropriate inputs 
or implicitly 

Nu; = Nu[(I, Re,, Pr, x, 5, D, 6). (16) 

The Couette model for the ice phase applies to the 
temperature field. The model is applied at a point one 
diameter upstream of the virtual cylinder location. 
Based on the work of Hirata et al. [8], equation (1) 
indicates that a one-dimensional model will work well. 
Also based on the assumption of small wedge angle, 
axial conduction in the ice layer is expected to be 
small. Conduction in a small wedge ice layer over a 
flat plate is largely one-dimensional which is precisely 
the Couette ice condition. The curved leading edge of 
the ice layer may be a difficult area for the Couette ice 
model to represent. 

3.2. Numerical scheme 
The calculation of the steady state iceform can be 

accomplished by three different methods, namely : 

(1) transient simulation using the interface equa- 
tion ; 

(2) numerical iteration satisfying steady state con- 
ditions ; and 

(3) hybrid-forcing transient steps toward steady 
state. 

In all cases, the path of calculation appears as a geo- 
metric transient. Only method (1) is fully physical 
because real time is involved. Method (2) searches for 
convergence of the geometric iteration. Method (3) is 
useful to perform real time simulation when the heat 
transfer strengths depend on geometry in a nonlinear 
fashion. 

In this paper, method (2) is used because the heat 
transfer strengths depend on geometry and the 
transient behavior is not considered. The steady state 
condition is input as a Couette model formula, zero 
generation rate or 

I Ye+4 
r+,=--- 

1+2 
(17) 

I 

where the heat transfer strength ratio depends on the 
ice geometry through its dependence on the water 
space Nusselt number or 

2 (I) = KO,NUr(l,. .). (18) 
I 

The Nusselt number is then related, by the wedge 
model equations given above, to ice thickness, Prandtl 
number, starting length, axial position, wedge angle 

start cr’ 
t 

Declare 
constents 

/ 

equation (29) 

r 

lt-!put 
thermel 0 paremeter 

81 

1 
Calculate 
Nusselt 
number 

equation (16) 

Calculate 
m heat trans. 

strength 
ratio equation (16) 

Calculate 
new ice 

thickness 
equation (17) 

A End 

FIG. 3. Steady state algorithm. 

and the equivalent local Reynolds number. Since the 
equivalent water space and local Reynolds number 
depend on the ice thickness an eigenvalue problem 
arises. The eigenvalue problem is solved by iteration 
between the Couette model condition of steady state 
and the matching of the wedge model heat transfer 
that is required for the particular ice thickness. Figure 
3 provides a flowchart of the steady state solution 
algorithm. Convergence of the ice geometry solution is 
checked by using a tolerance level between succeeding 
iteration steps. 

4. MINIMUM ENERGY DISSIPATION 

The ice geometry thermodynamically influences the 
thermal and mechanical energy dissipation of the ice 
and water fields. In the previous paper [l] the evol- 
ution theory for the Couette iceform design model 
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related the energy dissipation and an optimal selection 
criterion for a region close to the interface. The 
Couette iceform model is now used to represent the 
energy dissipation behavior of the ice shape. This 
provides a local functional for the iceform design pcr- 
formance. 

For a flat plate boundary layer flow, the entropy 
production or energy dissipation is concentrated in 

the near wall region. For example, Bejan [ 151 reviewed 
the viscous dissipation calculation in turbulent 

boundary layers and showed that ‘the wall region 

plays the dominant role in the production of entropy’. 

Similarly, laminar boundary layer flows are character- 
ized by the wall region velocity gradient, i.e. friction 

factor and shear work. 

4. I. Couette model of’ energy dissipation 

When both thermal and flow energy dissipation are 

considered, they compete and a convex performance 
functional arises. Then a minimum entropy pro- 
duction or minimum energy dissipation ice geometry 

can be found. The Couette model is used to represent 
the dominant thermal and flow energy dissipation 

terms in the near wall region. From the Couette ice- 

form model, the Brinkman number is related to the 
surface Nusselt number based on the water space as 

(19) 

The minimum energy dissipation condition has 

been formulated by the Couette model to be zero 
evolution length [l]. This yields a specific value for 
the Brinkman number as a function of the thermal 

conductivity ratio 

(20) 

where the optimum value of omega is determined by 
zero evolution length to be 

0” = J(l --K). (21) 

Consequently the optimal Nusselt number based on 
the effective water space is 

fill;= 1,:. (22) 

For the ice and water Couette iceform model, 

K = 0.21, 0” = 0.85, 

br = 5.69 and fib; = 3.85. (231 

When both the minimum energy dissipation cri- 
terion and the Reynolds number are selected, the 
problem degrees of freedom is zero. Then the thermal 
parameter is solved and the optimal thermal par- 
ameter for that given Reynolds number is obtained. 
The thermal parameter is solved by inverting the pre- 
vious steady state type equations. This results in a 
quasi-steady solution as 

where the optimal Nusselt number is stated above and 
the heat transfer strength ratio, given by the steady 
state condition, is the ratio between the Couettc icc- 

form model water space and the ice thickness 

(25) 

4.2. Numerical scheme 

The numerical scheme for calculating the optimal 

thermal parameter and the optimal steady state 
geometry is presented in the algorithm of Fig. 4. An 

iteration is required for two reasons : firstly, the non- 

Start Y 
t 

r I 

Calculate Calculate 
Nusselt Nusselt 
number number 

equation (16) difference 

Calculate 
optimal 
Nusselt 

equation (23) 

&I End 

FIG. 4. Optimal steady state algorithm 
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linear dependence of the wedge model Nusselt number 
on ice geometry and secondly, the indeterminance of 
selecting zero evolution length and Reynolds number 
in the Couette iceform model as discussed by LaFleur 

VI. 
The iteration is tracked by comparing the optimal 

Nusselt number to the Nusselt number from the 
wedge model. This yields a difference between the 
optimal Nusselt number and the interface Nusselt 
number 

ANu[ = NM, -I&:. (36) 

The geometric change is guided by the difference in 
these Nusselt numbers and a relaxation factor of 0.5 
is used to control the iteration 

(27) 

and 

I ,+ , = Z, +O.SAZ. (28) 

The convergence is measured by a tolerance of the 
geometric change. 

5. RESULTS AND DISCUSSION 

The steady state ice geometry and minimum energy 
dissipation calculations were performed using the pre- 
viously defined wedge model and Couette iceform 
model formulas and the evolution algorithms stated in 
Figs. 3 and 4. The steady state ice geometry calculation 
resulted in ice geometry profiles, generation function, 
designation function and energy dissipation devel- 

opments for prescribed Reynolds number and thermal 
parameters. The minimum energy dissipation cal- 
culation resulted in optimal thermal parameter dis- 
tributions, zero evolution length and the identification 
of a parametric relationship between Reynolds num- 
ber and the optimal thermal parameter. 

5.1. Steady state modeling results 
The steady state ice geometry for the flat plate ice- 

formation was calculated by solving an eigenvalue 
problem in an iterative fashion. The ice geometry 
development one diameter upstream of the virtual 
cylinder location was tracked by the generation and 
designation functions. The behavior of the model was 
tested by using combinations of Reynolds number 
and the thermal parameter coupled with experimental 
apparatus parameters as follows : 

D = 5.08cm, x = 63.5cm, 

5 = 54.1cm and 6 = 13.4cm. (29) 

Figure 5 shows geometric iterations vs the generation 
function, calculated by 

(30) 

where the heat transfer strength ratio is given by 
equation (10). A nonphysical transient arises due to 
dissatisfaction of the steady state condition in the 
eigenvalue problem. The steady state solution is 
characterized by a single control parameter, a heat 
transfer product based on equation (10) of the form 

X = Re&. (31) 

Legend 

curve FieD 6T 
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'TkD 

1 40 1.0 40 

1.0 - 2 1000 0.2 40 

0.9 40 - 

4 250 1.0 250 

0.6 - 5 1000 0.5 250 

6 25000 0.1 250 

1000 

1000 

1000 

0 0.1 0.2 0.3 

Ice tiickness I /6 

FIG. 5. Generation function vs ice thickness and flow and thermal parameters. 
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Table 1. Test cases for the Couette iceform model applied to flat plate iceformation 

tiSe d 
Authors # (cm) 

Hirata PI n/. (1979), lam&r I 40.6 
2 40.6 
3 40.6 

Hirata et al. (1979), near transition 4 40.6 
5 40.6 
6 40.6 

Seki er a/. (1984) 7 1.5 
8 1.5 

LaFleur (1988) 9 13.3 
IO 13.3 
11 13.3 

-.-__-_-_ ___._...._~ 

The three example values of steady state geometry 

differ by different values of the heat transfer product. 
Figure 5 shows the examples of 40, 250 and 1000. 

Although the steady state is characterized by the single 
parameter, the iterative path to steady state depends 

separately on the flow and thermal parameters. This 
is shown by the different paths converging on the 
generation function axis at the same ice thickness. The 
different paths also show varying degrees of non- 

linearity in the Couette iceform and wedge models of 
the flat plate iceformation. However, for the cases 

shown (ice growth) the steady state solutions are 
stable. 

The Couette iceform model was also tested for cases 
cited in the literature. Table 1 indicates a variety of 
situations investigated by ice formation researchers 
[8, 14, 9, 51. Flat plate studies that indicated different 

channel geometries, flow speeds and thermal par- 
ameter values accompanied by ice thickness data were 

used to test the robustness of the Couette iceform 

model for the flat plate. Since the current wedge model 
is for laminar flow, only cases that used a subcritical 

Reynolds number were considered, i.e. lie,, < 24 000. 
The algorithm of the Couette model was run using 
the stated experimental conditions. The model ice 
thicknesses can then be compared to the experimental 

data. Figure 6 shows a plot of experimental and 
Couette model ice thicknesses. The .Y = J line indi- 
cates the relative success of the Couette model. Devi- 

ations result from three possible effects : 

(1) free convection effects in the boundary layer 

due to maximum density instability of water at 4°C 
(2) starting length approximation and fuzzy ther- 

mal boundary condition at the cold plate edge 
(3) non-monotonic velocity profiles in the acceler- 

ating boundary layer over the wedge-ramp. 

These effects are not specifically addressed in the 
present model. The free convection effect can be 
checked by calculating the Grashof number for the 
most unstable water temperature difference as was 
done for laminar flat plate ice formation by Hirata rr 
(11. [8]. In the cases cited in Table 1, the Grashof 
number was well below 200 ; thus the free convection 
effects were small. However, in some cases longi- 

0 20.0 3637 0.105 6.0 5.69 
0 16.5 1560 0.330 3.2 2.82 
0 21.5 1560 0.625 2.0 1.81 
0 34.0 22 124 0.175 I.6 2.18 
0 30.0 22 3X6 0.185 I.3 I .97 
0 29.0 21840 0.204 1.4 I.75 

300 320 9313 0.300 1.0 1.12 
300 320 18627 0.286 0.8 (I.98 
54 63.5 1843 0.44 I.3 1.76 
54 63.5 3843 0.37 1.7 2.03 
54 63.5 1843 0.27 2.1 2.62 

tudinal ridges along the ice wedge were observed. This 

means that free convection effects still occur even for 
subcritical Grashof numbers. This demonstrates the 
sensitivity of the ice interface shape to flow pattern 
variations. 

The origin of the ice layer on the flat plate was found 
to occur very close to the cold thermal boundary 
condition. In the wedge model the thermal step is 
sharp. In experiments of ice formation over a finite 
thickness flat plate, the thermal step is not sharp. This 
leads to variations in the actual thermal boundary 
condition, the thermal boundary iayer and the origin 
of the ice layer. This is especially true near the origin 
of the ice layer where the ice layer is highly curved 
and the one-dimensional conduction assumption is 
suspect. Figure 7 displays ice profiles over a cold flat 
plate for variations in the flow and thermal 
parameters. The Couette model is used over the entire 

Legend -cases from table 1 

Case Symbol Source 

A 
: h 

Hiram et al. 
laminar 

6- 3 A 1979 

4 L Hirata et a/. 

5 . near transition 
-6 . 

0 t 2 3 4 5 6 

Couette model ice thickness (cm) 

Fm. 6. Comparison of Couette model and experimental ice 
thicknesses from previous flat plate studies. 
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Legend 

Curve ReD BT 9; ReD 

1 1000 2.0 4000 
6 

0 
54 55 56 57 56 59 60 61 62 63 64 65 66 67 66 69 

Axial location from inlet (cm) 

FIG. 7. Steady state ice layer profiles. 

region of interest by changing the axial location in the 

steady state calculation. The profiles shown quali- 
tatively match those found in studies cited in Table 1. 
Approximations in the ice layer origin region may 

lead to discrepancies in the relatively flat ice profile 

downstream. 
The velocity profile accelerates up and over the origin 

of the ice layer. Hirata ef al. [8] found that the velocity 

profile experiences an inflection point due to this accel- 
eration. Thus the velocity profile is not monotonic as 

in the wedge type solutions given by Schlichting [2]. 
The inflection would lead to a different effective water 
space in the Couette iceform model and different ice 
thickness results. 

In summary, the steady state calculation is an eigen- 
value problem to solve the following equation : 

where 

(33) 

Equations (3) and (4) are used for starting length and 
wedge angle factors. 

5.2. Energy dissipation results 

The previous steady state results were extended by 
investigating the energy dissipation characteristics of 
the flat plate iceformation. This is relevant to dem- 

onstrate the potential of using iceformation to design 
flow and thermal shapes. The Couette model is best 
utilized for the purpose of approximating near-inter- 
face viscous and thermal dissipation. This provides a 
means of judging the use of iceformation as a flow 
and thermal design tool. 

Figure 7 illustrates the solution of an optimal ice 
contour over a variable temperature plate. This yields 
a criterion for combinations of Reynolds number, 

axial position and thermal parameter that yield zero 
evolution length shapes, i.e. steady state ice geometries 

that minimize energy dissipation. For example, the 
optimal criterion at an axial location of 63.5 cm is 

given by 

Re& = 1119. (34) 

Consequently, there is only one optimal geometry at 
any axial location as shown in Fig. 7. A more general 

result for any axial position is found by calculating 
the optimal thermal parameter for given Reynolds 

number, axial position and water tunnel parameters. 
This utilizes the optimal Nusselt number value of 3.85 
from equation (23) and matches the actual ice heat 
transfer by iteration of the ice position. 

Figure 8 illustrates the evolution of ice geometry 

for various combinations of Reynolds number and 
the thermal parameter. The designation function is 
calculated by 

where the energy dissipation strength ratio is governed 
by the Couette iceform model as 

~=&[l+Br-g] (36) 

and 

Br = 2[Nz4,-11. (37) 

The evolution path is jagged due to large changes 

in the interface position at the beginning of evolution. 
As evolution proceeds the steps become smaller and 
the geometry improves on a smooth path. The evol- 
ution path ceases at steady state and does not necess- 
arily yield zero evolution length (designation function 
at steady state). In two of the examples the flow and 
thermal parameters were chosen such that the evol- 
ution does not end in optimal steady states. One 
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ice thickness 

-0.1 

-1.0 

FIG. 8. Designation function vs ice thickness and flow and thermal parameters. 

steady state has a positive evolution length and the 
other negative. The case that yields optimal steady 
state corresponds to the optimal thermal parameter as 
determined by equation (34). In all cases the evolution 
path is dependent separately on the Reynolds number 
and the -thermal parameter. The flat plate Couette 
iceform model yields evolutions that are thermo- 
dynamically stable. 

The designation function indicates the sensitivity of 
the energy dissipation to geometric variations. The 
convergence of designation function values at steady 
state do not correspond to convergence of ice 
geometry energy dissipation. Figure 9 illustrates this 
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point. The same cases as shown in Fig. 8 are con- 
sidered for energy dissipation. Again, the evolution 
paths are jagged at the start but become smooth as the 
geometry converges on steady state. All ice geometry 
evolutions led to a reduction in the energy dissipation 
as calculated by 

However the near-minimum values of energy dis- 
sipation depend separately an Reynolds number and 
the thermal parameter. The curves in Fig. 9 show 
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FIG. 9. Energy dissipation vs ice thickness and flow and thermal parameters. 



Application of the Couette model 2641 

that a higher thermal parameter yields a thinner ice 
thickness and higher energy dissipation. Similarly, a 
higher Reynolds number yields a thinner ice thickness 
but nearly the same energy dissipation. This is due to 
counteracting Reynolds number terms in the wedge 
model, effective water space and Couette model. 

In summary, the energy dissipation characteristics 
of the flat plate icefotmation can be approximated by 
the Couette iceform model. Minimum energy dis- 
sipation at steady state is obtained by using the opti- 
mal Nusselt number value in the heat transfer and ice 
thickness equations 

(39) 

This expression can be substituted into equation (33) 
to obtain an eigenvalue equation for the optimal 
steady state geometry 

where equation (39) must be matched by the interface 
heat transfer at steady state. 

6. CONCLUSIONS 

The Couette iceform model was used to investigate 
two-dimensional iceformation over a cold flat plate. 
Steady state ice profiles were calculated by using 
different axial locations. The Couette model was 
tested using information from previous flat plate ice 
formation investigations. The Couette model was 
successful at predicting point ice thicknesses and ice 
profile shapes. Steady state ice thickness was found 
to be correlated with a heat transfer product: the 
Reynolds number multiplied by the square of the ther- 
mal parameter. 

The Couette iceform model was used to calculate 
the energy dissipation characteristics of the flat plate 
iceformation. The optimal criterion of zero evolution 
length was used to determine values of the optimal 
thermal parameter for a given Reynolds number. The 
optimal criterion led to the heat transfer product being 
specifically equal to a function of the axial position 
and the +unnel geometry parameters. In general, 
steady state geometries did not minimize energy dis- 
sipation. Energy dissipation was reduced during the 
ice geometry iteration. 

The flat plate example showed the utility of the 
Couette model to approximate two-dimensional 
steady state ice geometries and energy dissipation. 
The Couette model can be used to control the ice- 
formation process as a shape design tool by selection 

of flow and thermal parameters, The correlation of 
results with Reynolds number and the thermal 
parameter allow the preprocess calculation of con- 
ditions for iceformation design experiments. Couette 
iceform modeling of different i~fo~ation regimes 
and development of correction factors are topics 
for further investigation. 
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EXEMPLE DU MODELE DE DESSIN DE FORME DE GLACE SELON COUETTE: 
FORMATION DE GLACE SUR PLAQUE PLANE 

R&m&On presente une application du mod& de contour de formation de glace selon Couette. La 
formation de glace bidimensionnelle sur unc plaque plane froide est consider&e pour demontrer I’approche 
par la theorie d’evolution pour contrbler le mecanisme de formation de glace. Les profils theoriques de 
glace s’accordent raisonnablement bien avec les resuhats experimentaux. Des expressions du parametre de 
contrble optimal sont obtenues pour dessiner des formes a dissipation minimale d’energie. Ces resultats 
peuvent etre utilises dans le dessin des formes de glaciation pour des tcoulements complexes tels que les 

jonctions ailejfuselage et tube/ailette. 

BEISPIEL FUR DAS COUETTE EISBILDUNGSMODELL: EISBILDUNG AN EINER 
EBENEN PLATTE 

Zusammenfassung-In dieser Arbeit wird eine Anwendung des Couette Eisbildungsmodells vorgestellt. 
Anhand der zweidimensionalen Eisbildung an einer kalten ebenen Platte wird die Anwendung der Evolu- 
tionstheorie auf die Beeinflussung des Formgebungsvorganges durch Eisbildung gezeigt. Die theoretischen 
Eisprofile stimmen mit’experimentell ermittelten weitgehend iiberein. Es werden die Beziehungen fur 
optimale Wahl der EinfluBgr6Ben ermittelt, die zu einer Eisform mit minimaler Dissipationsenergie fiihrt. 
Diese Ergebnisse konnen verwendet werden, urn mit Hilfe der Eisbildung geometrische Formen fiir 
komplizierte Striimungen zu entwerfen, wie z. B. den Ansatzbereich einer Tragflache oder den Rippenansatz 

an einem Rohr. 

MCI-IO.JIb30BAHWE MOjJEJIki KY3TTA I-IPM JIb~OOBPA30BAHMM HA I-IJIOCKOR 
IIJIACTMHE 

hflOTadIIHCblBaeTCK IIpHMeHeHAe MOACJIH Ky3TTa IIpEi 06pa30BaHHN SbAa. kiClTOJIb3OBaHHe 

3BOAH)IUiOHHOii Teopmi AJIn peryn~posa~Hn IIpowcCa @OpMHpOBaHHff o6pa3ymwerocK AbAa WIJIIOCT- 

pHpyeTCR Ha IlpHMepC AByMepHOrO JlbAOO6pa30BaHHK Ha XOJIOAHOfi mOCK0i-i llJlaCTHHe.TeopeTHWCK5ie 

IIpO@iJIH CAOR JIbAa yAOBAeTBOpHTeJIbH0 COrAaCjWJTCK C 3KC,lepHMeHTaJIbHbIMW AaHHbIhfB. nOJIy'IeHbI 

cooTHomeHm AJIK napaMeq3oB onTHMa.xbHoro perynapoBaaen, COOTB~TCTBYH)WX @opMaMc MHHsiMa- 

AbHblM paC4XKHHeM 3HeplWi.Pe3yAbTaTbl MOI'J'T W.XOAb30BaTbCI AJUl paCYeTa (POpM o6paaymruerocn 
AbAanpH CAOwtHbocTeYeHHKX,HanpHMep,BCAyriaKXCOeAHHeHwiiKpbmO-~Io3eAKmH -rpy6a-pe6po. 


